Questionário de Desafios Envolvendo Trigonometria

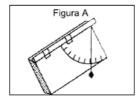
Aluno(a):	
Turma:	
Professor(a):	

Parte 01

Resolva a questão a seguir. Ela foi apresentada no Provão -2000 (elaborado pelo MEC, para testar os formandos professores de Matemática).

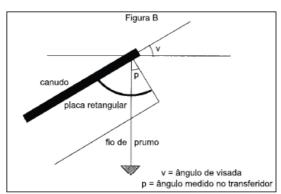
14

Ensinando Trigonometria, um professor construiu, para motivar seus alunos, um aparelho rudimentar, usado por alguns engenheiros e guardas-florestais para medir, à distância, a altura de árvores. Este aparelho é formado por uma placa retangular de madeira, que tem um canudo colado ao longo de um dos seus lados, e tem um fio de prumo preso a um dos vértices, próximo a uma das extremidades do canudo (Figura A).



Observando o topo de uma árvore através do canudo, os profissionais verificam o ângulo indicado no transferidor pelo fio de prumo. Segundo esses profissionais, a medida do ângulo de "visada", isto é, do ângulo formado com o plano horizontal pelo canudo, quando por ele se observa o topo da árvore, é a mesma determinada pelo fio de prumo sobre o transferidor.

a) Com o auxilio do esquema da Figura B, verifique, justificando, se de fato o ângulo de "visada" tem a mesma medida do ângulo indicado pelo fio de prumo sobre o transferidor. (valor: 10,0 pontos)



b) Suponha que você deseja medir a altura, em relação ao plano horizontal dos seus olhos, do topo de uma árvore da qual você não consegue se aproximar por haver um rio entre ela e você. Utilizando esse aparelho, mostre como fazê-lo, indicando os cálculos necessários para chegar ao resultado. (valor: 10,0 pontos)

MATEMÁTICA 10 PROVA 1 PROVA 1

Parte 02

Você saberia dizer de que tipo é o teodolito apresentado na questão anterior? Responda justificando os seus argumentos.

Parte 03

Um topógrafo lançou mão de um Teodolito de Ângulo Congruente para medir a altura de uma árvore, procedendo como se segue.

De um ponto X ele fez a tomada da primeira "visada" do topo da árvore encontrando um ângulo "v" (medido em graus). Depois, de um ponto Y (distante "d" metros de X) e mais próximo da árvore, tomou a segunda "visada" do seu topo, encontrando um ângulo "p".

A seguir, desprezando a altura em que havia segurado o aparelho e considerando todos os dados encontrados desenvolveu a seguinte fórmula para calcular a altura "x" da árvore:

$$x = (d.tgv.tgp) [1 / (tgp - tgv)]$$

Faça um esboço da situação e verifique se o topógrafo raciocinou corretamente. Justifique detalhadamente os seus argumentos.

Parte 04

Desenhe o esboço de duas escadas E e F, com três degraus, de modo que:

- A escada E tenha para cada degrau 7cm de largura por 3cm de altura;
- A escada F tenha para cada degrau 3cm de largura por 7cm de altura.
- a) Qual é a inclinação da escada E? E da escada F?
- b) Qual das duas escadas é mais cansativa para se subir?
- c) Existe alguma relação entre inclinação e esforço?
- d) Quando os engenheiros projetam rampas e ladeiras para serem usadas nas ruas das cidades, eles levam em consideração a relação entre inclinação e esforço? Tente justificar a sua reposta. S não souber, procure o professor de Física ou o de Biologia para conversar sobre esse assunto.
- e) Faça uma pesquisa para entender como são as inclinações das ruas de uma cidade.

Parte 05

Uma escada de 20m de comprimento está apoiada contra uma parede vertical. Usando uma tabela trigonométrica, determine a inclinação da escada em relção ao chão, quando a base está a:

- a) 7m da parede;
- b) 10m da parede.

Parte 06

Você sabia que, na construção civil, quando os engenheiros planejam a construção de uma rampa ou de uma escada, eles precisam seguir normas pré-estabelecidas pela Associação Brasileira de Normas Técnicas (ABNT), as quais são muito importantes para a população, principalmente para cadeirantes? Essas normas se referem a um valor percentual e se relacionam com a inclinação da rampa.

Observe uma tabela que foi preenchida segundo a norma 9050/1994 da ABNT, a qual trata da acessibilidade a edificações, espaço mobiliário e equipamentos urbanos.

Condições Mínimas Para Rampas					
Inclinação admissível de cada segmento de rampa	Desnível máximo de cada segmento de rampa	Número máximo de segmentos de rampa	Comprimento máximo de cada segmento de rampa		
Porcentagem	Metros	-	Metros		
5,00 (1:20)	1,50m	-	30,00m		
6,25 (1:16)	1,00m - 1,20m	14 - 12	16,00m - 19,20m		
8,33 (1:12)	0,90m	10	10,80m		
12,50 (1:8)	0,183m	01	1,46m		

- a) Analise as inclinações apresentadas na tabela frente às rampas com essas características. Como são os lances e o número de rampas relativas a cada porcentagem?
- b) Você saberia dizer o que significam as porcentagens apresentadas na primeira coluna da tabela?
 Justifique a sua resposta.

Parte 07

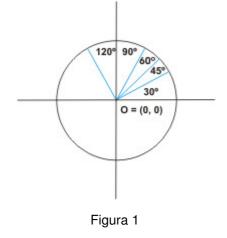
a) Considere o plano cartesiano e uma circunferência centrada na origem O = (0,0) e com raio qualquer, como a desenhada na Figura 1.

Nessa figura, estão representados segmentos de semirretas de origem em O que se cortam, formando ângulos com o semieixo positivo das abcissas de 30°, 45°, 60°, 90° e 120°.

Chame cada ângulo de A.

b) Complete a tabela. Conseguiu?

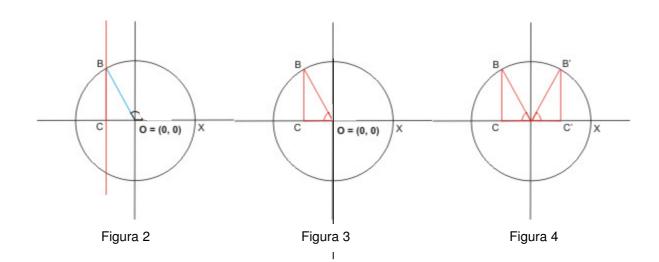
Tabela				
∠A	sen A	cos A	tg A	
30°				
45°				
60°				
90⁰				
120⁰				



- c) Qual é a sua sugestão para completar a última linha da tabela?
- d) Pense em um ângulo A obtuso. É verdade que o seu suplementar é menor do que o ângulo raso?

Parte 08

Suponha que você tenha estudado somente as razões trigonométricas relativas a ângulos agudos. Considere $\mu > 90^{\circ}$ e $\zeta = 180^{\circ}$ - μ e os três desenhos das figuras a seguir.



a) Verifique, justificando, se é verdade que: se traçar uma reta perpendicular ao eixo x, passando por B, terá um ponto C e portanto, um triângulo BOC, sobre o qual

```
sen \zeta = sen BOC = BC / OB; cos \zeta = cos BOC = OC / OB; tg \zeta = tg BOC = BC / OB.
```

b) Agora trace uma semirreta que faça um ângulo com o semi-eixo positivo das abcissas com a mesma medida do ângulo suplementar a μ, isto é, (180° - μ), que neste caso é ζ.

Seja B' a interseção da circunferência com a semirreta. Trace, em seguida, a reta perpendicular ao eixo x e que passa por B' e chame o ponto de interseção dessas retas de C', formando o triângulo OB'C'.

Verifique que esses dois triângulos são congruentes e estão em semiplanos diferentes em relação ao eixo das ordenadas. Em matemática, pode-se indicar essa diferença de localização nos semiplanos por meio de uma convenção sobre as razões trigonométricas, da maneira como se segue:

```
\cos BOC' = -\cos B'OC' = -\cos (180^{\circ} - BOC');

\sin BOC' = \sin B'OC' = \sin (180^{\circ} - BOC').
```

- c) Responda justificando detalhadamente os seus argumentos: que relações existem entre os valores de:
 - cos μ e cos ζ?
 - sen μ e sen ζ?
 - tg μ e tg ζ?
- d) Se A é um ângulo obtuso verifique e justifique se são verdadeiras as seguintes relações:
 - $\cos A = -\cos (180^{\circ} A)$;
 - sen A = sen $(180^{\circ} A)$;
 - $tg A = -tg (180^{\circ} A)$.